Midterm Exam

(February 16th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Complete the following table. Use the fewest number of bits in each case: (9 pts.)

	REPRESENTATION					
Decimal	Sign-and-magnitude	1's complement	2's complement			
	11011001					
		0100101				
		1000010				
			101100			
			1000000			

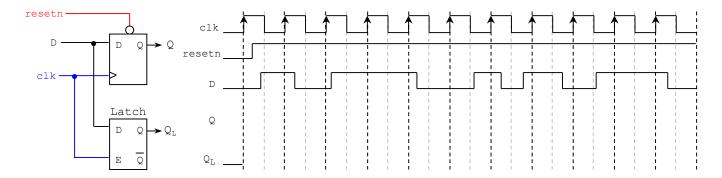
b) Convert the following decimal numbers to their 2's complement representations. (3 pts.) \checkmark -16.1875 \checkmark 37.3125

c) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c_0 to c_n . For each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts) \checkmark -89 + 128

PROBLEM 2 (18 PTS)

• Calculate the result of the following operations. The operands are signed fixed-point numbers. The result must be a signed fixed point number. For the division, use x = 5 fractional bits.

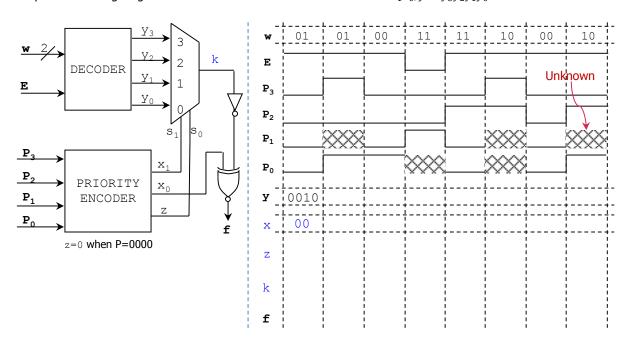
1.0001 +		1000	.0101 -	
1.001001		1.010101		
01.011 ×	1.001 ×		01.01110 ÷	
1.01101 1.01		01	1.011	


PROBLEM 3 (26 PTS)

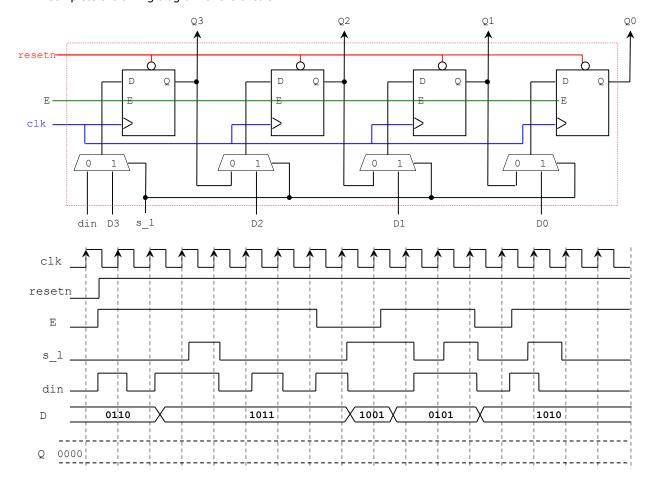
• Calculate the result (provide the 32-bit result) of the following operations with single floating point numbers. Truncate the results when required. When doing fixed-point division, use x = 4 fractional bits.

✓ 40B80000 - 42FA8000	✓ 0A800000 × FAB80000	✓ 7B390000 ÷ C8C00000
-----------------------	-----------------------	-----------------------

PROBLEM 4 (8 PTS)


• Complete the timing diagram of the circuit shown below:

1


PROBLEM 5 (13 PTS)

• Complete the timing diagram of the circuit shown below. Note that $x = x_1x_0$, $y = y_3y_2y_1y_0$

PROBLEM 6 (15 PTS)

The following circuit is a parallel/serial load shift register with enable input. Shifting operation: s_1=0. Parallel load: s_1=1.
✓ Complete the timing diagram of the circuit:

2